Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function

需要校正 NBD1 能量学和域界面才能恢复 ΔF508 CFTR 折叠和功能

阅读:10
作者:Wael M Rabeh, Florian Bossard, Haijin Xu, Tsukasa Okiyoneda, Miklos Bagdany, Cory M Mulvihill, Kai Du, Salvatore di Bernardo, Yuhong Liu, Lars Konermann, Ariel Roldan, Gergely L Lukacs

Abstract

The folding and misfolding mechanism of multidomain proteins remains poorly understood. Although thermodynamic instability of the first nucleotide-binding domain (NBD1) of ΔF508 CFTR (cystic fibrosis transmembrane conductance regulator) partly accounts for the mutant channel degradation in the endoplasmic reticulum and is considered as a drug target in cystic fibrosis, the link between NBD1 and CFTR misfolding remains unclear. Here, we show that ΔF508 destabilizes NBD1 both thermodynamically and kinetically, but correction of either defect alone is insufficient to restore ΔF508 CFTR biogenesis. Instead, both ΔF508-NBD1 energetic and the NBD1-MSD2 (membrane-spanning domain 2) interface stabilization are required for wild-type-like folding, processing, and transport function, suggesting a synergistic role of NBD1 energetics and topology in CFTR-coupled domain assembly. Identification of distinct structural deficiencies may explain the limited success of ΔF508 CFTR corrector molecules and suggests structure-based combination corrector therapies. These results may serve as a framework for understanding the mechanism of interface mutation in multidomain membrane proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。