Expression Analyses of Rich2/Arhgap44, a Rho Family GTPase-Activating Protein, during Mouse Brain Development

小鼠大脑发育过程中 Rho 家族 GTPase 活化蛋白 Rich2/Arhgap44 的表达分析

阅读:13
作者:Naoki Goto, Masashi Nishikawa, Hidenori Ito, Mariko Noda, Nanako Hamada, Hidenori Tabata, Makoto Kinoshita, Koh-Ichi Nagata

Abstract

Rho family small GTPases, such as Rho, Rac, and Cdc42, play essential roles during brain development, by regulating cellular signaling and actin cytoskeletal reorganization. Rich2/Arhgap44, a Rac- and Cdc42-specific GTPase-activating protein, has been reported to be a key regulator for dendritic spine morphology and synaptic function. Given the essential roles of Rac and Cdc42 in brain development, Rich2 is supposed to take part in brain development. However, not only the molecular mechanism involved but also the expression profile of Rich2 during neurodevelopment has not yet been elucidated. In this study, we carried out expression analyses of Rich2 by focusing on mouse brain development. In immunoblotting, Rich2 exhibited a tissue-dependent expression profile in the young adult mouse, and the expression was increased during brain development. In immunohistochemical analyses, Rich2 was observed in the cytoplasm of cortical neurons at postnatal day (P) 0 and then came to be enriched in the nucleus with moderate distribution in neuropils at P7. Later at P30, a complex immunostaining pattern of Rich2 was observed; Rich2 was distributed in the nucleus, cytoplasm, and neuropils in many cortical neurons, whereas other neurons frequently displayed little expression. In the hippocampus at P7, Rich2 was distributed mainly in the cytoplasm of excitatory neurons in the cornu ammonis regions, while it was moderately detected in the nucleus in the dentate granule cells. Notably, Rich2 was distributed in excitatory synapses of the cornu ammonis 1 region at P30. Biochemical fractionation analyses also detected Rich2 in the postsynaptic density. Taken together, Rich2 is found to be expressed in the central nervous system in a developmental stage-dependent manner and may be involved in synapse formation/maintenance in cortical neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。