FMRP acts as a key messenger for visceral pain modulation

FMRP 是内脏疼痛调节的关键信使

阅读:5
作者:Liu-Kun Yang, Liang Lu, Ban Feng, Xin-Shang Wang, Jiao Yue, Xu-Bo Li, Min Zhuo, Shui-Bing Liu

Abstract

Visceral pain is a common clinical symptom, which is caused by mechanical stretch, spasm, ischemia and inflammation. Fragile X syndrome (FXS) with lack of fragile X mental retardation protein (FMRP) protein is an inherited disorder that is characterized by moderate or severe intellectual and developmental disabilities. Previous studies reported that FXS patients have self-injurious behavior, which may be associated with deficits in nociceptive sensitization. However, the role of FMRP in visceral pain is still unclear. In this study, the FMR1 knock out (KO) mice and SH-SY5Y cell line were employed to demonstrate the role of FMRP in the regulation of visceral pain. The data showed that FMR1 KO mice were insensitive to zymosan treatment. Recording in the anterior cingulate cortex (ACC), a structure involved in pain process, showed less presynaptic glutamate release and postsynaptic responses in the FMR1 KO mice as compared to the wild type (WT) mice after zymosan injection. Zymosan treatment caused enhancements of adenylyl cyclase 1 (AC1), a pain-related enzyme, and NMDA GluN2B receptor in the ACC. However, these up-regulations were attenuated in the ACC of FMR1 KO mice. Last, we found that zymosan treatment led to increase of FMRP levels in the ACC. These results were further confirmed in SH-SY5Y cells in vitro. Our findings demonstrate that FMRP is required for NMDA GluN2B and AC1 upregulation, and GluN2B/AC1/FMRP forms a positive feedback loop to modulate visceral pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。