A novel leishmanial copper P-type ATPase plays a vital role in parasite infection and intracellular survival

一种新型利什曼原虫铜 P 型 ATPase 在寄生虫感染和细胞内存活中起着至关重要的作用

阅读:6
作者:Rupam Paul, Sourav Banerjee, Samarpita Sen, Pratiksha Dubey, Saptarshi Maji, Anand K Bachhawat, Rupak Datta, Arnab Gupta

Abstract

Copper (Cu) is essential for all life forms; however, in excess, it becomes toxic. Toxic properties of Cu are known to be utilized by host species against various pathogenic invasions. Leishmania, in both free-living and intracellular forms, exhibits appreciable tolerance toward Cu stress. While determining the mechanism of Cu-stress evasion employed by Leishmania, we identified and characterized a hitherto unknown Cu-ATPase in Leishmania major and established its role in parasite survival in host macrophages. This novel L. major Cu-ATPase, LmATP7, exhibits homology with its orthologs at multiple motifs. In promastigotes, LmATP7 primarily localized at the plasma membrane. We also show that LmATP7 exhibits Cu-dependent expression patterns and complements Cu transport in a Cu-ATPase-deficient yeast strain. Promastigotes overexpressing LmATP7 exhibited higher survival upon Cu stress, indicating efficacious Cu export compared with Wt and heterozygous LmATP7 knockout parasites. We further explored macrophage-Leishmania interactions with respect to Cu stress. We found that Leishmania infection triggers upregulation of major mammalian Cu exporter, ATP7A, in macrophages, and trafficking of ATP7A from the trans-Golgi network to endolysosomes in macrophages harboring amastigotes. Simultaneously, in Leishmania, we observed a multifold increase in LmATP7 transcripts as the promastigote becomes established in macrophages and morphs to the amastigote form. Finally, overexpressing LmATP7 in parasites increases amastigote survivability within macrophages, whereas knocking it down reduces survivability drastically. Mice injected in their footpads with an LmATP7-overexpressing strain showed significantly larger lesions and higher amastigote loads as compared with controls and knockouts. These data establish the role of LmATP7 in parasite infectivity and intramacrophagic survivability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。