Arsenic causes mitochondrial biogenesis obstacles by inhibiting the AMPK/PGC-1α signaling pathway and also induces apoptosis and dysregulated mitophagy in the duck liver

砷通过抑制 AMPK/PGC-1α 信号通路导致线粒体生物合成障碍,并诱导鸭肝细胞凋亡和线粒体自噬失调

阅读:6
作者:Gaolong Zhong, Ting Hu, Lixuan Tang, Tong Li, Shaofeng Wu, Xuewu Duan, Jiaqiang Pan, Hui Zhang, Zhaoxin Tang, Xia Feng, Lianmei Hu

Abstract

Arsenic is a dangerous metalloid-material which is known to cause liver injury in many animals and humans. However, little is known about the underlying mechanism of arsenic-induced hepatotoxicity in poultry. This study was executed to systematically investigate the potential role of mitochondrial biogenesis, mitophagy and apoptosis in duck hepatotoxicity caused by arsenic. Results showed that the body weight and liver coefficient of duck had distinct changed after arsenic-exposure, and the arsenic content in serum and liver also increased significantly in a dose-dependent manner. Meanwhile, histopathological examination and metabolomics results showed that arsenic-exposure caused severe steatosis and metabolism disorder in liver tissues. Furthermore, arsenic-exposure significantly inhibited AMPK/PGC-1α-mediated mitochondrial biogenesis, determined by the ultrastructure observation and down-regulation of p-AMPKα/AMPKα, PGC-1α, NRF1, NRF2, TFAM, TFB1M, TFB2M and COX-Ⅳ expression levels. Besides, arsenic-treatment obviously increased the levels of mitophagy (PINK1, Parkin, LC3, P62) and pro-apoptotic (Caspase-3, Caspase-9, Cleaved Caspase-3, Cytc, Bax, P53) indexes, and simultaneously resulted in reductions in anti-apoptosis index (Bcl-2). Overall, our findings provided evidences that arsenic-induced duck hepatotoxicity may be caused by a combination of impaired mitochondrial biosynthesis, mitophagy, and mitochondrial-dependent apoptosis. To our knowledge, this is the first report to systematically investigate the potential mechanism of arsenic-induced hepatotoxicity in poultry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。