Roscovitine reduces neuronal loss, glial activation, and neurologic deficits after brain trauma

Roscovitine 可减少脑外伤后的神经元丢失、神经胶质激活和神经系统缺陷

阅读:5
作者:Genell D Hilton, Bogdan A Stoica, Kimberly R Byrnes, Alan I Faden

Abstract

Traumatic brain injury (TBI) causes both direct and delayed tissue damage. The latter is associated with secondary biochemical changes such as cell cycle activation, which leads to neuronal death, inflammation, and glial scarring. Flavopiridol--a cyclin-dependent kinase (CDK) inhibitor that is neither specific nor selective--is neuroprotective. To examine the role of more specific CDK inhibitors as potential neuroprotective agents, we studied the effects of roscovitine in TBI. Central administration of roscovitine 30 mins after injury resulted in significantly decreased lesion volume, as well as improved motor and cognitive recovery. Roscovitine attenuated neuronal death and inhibited activation of cell cycle pathways in neurons after TBI, as indicated by attenuated cyclin G1 accumulation and phosphorylation of retinoblastoma protein. Treatment also decreased microglial activation after TBI, as reflected by reductions in ED1, galectin-3, p22(PHOX), and Iba-1 levels, and attenuated astrogliosis, as shown by decreased accumulation of glial fibrillary acidic protein. In primary cortical microglia and neuronal cultures, roscovitine and other selective CDK inhibitors attenuated neuronal cell death, as well as decreasing microglial activation and microglial-dependent neurotoxicity. These data support a multifactorial neuroprotective effect of cell cycle inhibition after TBI--likely related to inhibition of neuronal apoptosis, microglial-induced inflammation, and gliosis--and suggest that multiple CDKs are potentially involved in this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。