Structural Characterization of Haemophilus influenzae Enolase and Its Interaction with Human Plasminogen by In Silico and In Vitro Assays

通过计算机和体外试验对流感嗜血杆菌烯醇化酶的结构进行表征及其与人类纤溶酶原的相互作用

阅读:5
作者:Yesenia Osorio-Aguilar, Maria Cristina Gonzalez-Vazquez, Diana Elizabeth Hernandez-Ceron, Patricia Lozano-Zarain, Ygnacio Martinez-Laguna, Cesar Raul Gonzalez-Bonilla, Rosa Del Carmen Rocha-Gracia, Alejandro Carabarin-Lima

Abstract

Haemophilus influenzae is the causal agent of invasive pediatric diseases, such as meningitis, epiglottitis, pneumonia, septic arthritis, pericarditis, cellulitis, and bacteremia (serotype b). Non-typeable H. influenzae (NTHi) strains are associated with localized infections, such as otitis media, conjunctivitis, sinusitis, bronchitis, and pneumonia, and can cause invasive diseases, such as as meningitis and sepsis in immunocompromised hosts. Enolase is a multifunctional protein and can act as a receptor for plasminogen, promoting its activation to plasmin, which leads to the degradation of components of the extracellular matrix, favoring host tissue invasion. In this study, using molecular docking, three important residues involved in plasminogen interaction through the plasminogen-binding motif (251EFYNKENGMYE262) were identified in non-typeable H. influenzae enolase (NTHiENO). Interaction with the human plasminogen kringle domains is conformationally stable due to the formation of four hydrogen bonds corresponding to enoTYR253-plgGLU1 (K2), enoTYR253-plgGLY310 (K3), and enoLYS255-plgARG471/enoGLU251-plgLYS468 (K5). On the other hand, in vitro assays, such as ELISA and far-western blot, showed that NTHiENO is a plasminogen-binding protein. The inhibition of this interaction using polyclonal anti-NTHiENO antibodies was significant. With these results, we can propose that NTHiENO-plasminogen interaction could be one of the mechanisms used by H. influenzae to adhere to and invade host cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。