The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system

嗜肺军团菌基因组进化以适应由 CsrA 系统控制的多种调控机制

阅读:4
作者:Tobias Sahr, Christophe Rusniok, Francis Impens, Giulia Oliva, Odile Sismeiro, Jean-Yves Coppée, Carmen Buchrieser

Abstract

The carbon storage regulator protein CsrA regulates cellular processes post-transcriptionally by binding to target-RNAs altering translation efficiency and/or their stability. Here we identified and analyzed the direct targets of CsrA in the human pathogen Legionella pneumophila. Genome wide transcriptome, proteome and RNA co-immunoprecipitation followed by deep sequencing of a wild type and a csrA mutant strain identified 479 RNAs with potential CsrA interaction sites located in the untranslated and/or coding regions of mRNAs or of known non-coding sRNAs. Further analyses revealed that CsrA exhibits a dual regulatory role in virulence as it affects the expression of the regulators FleQ, LqsR, LetE and RpoS but it also directly regulates the timely expression of over 40 Dot/Icm substrates. CsrA controls its own expression and the stringent response through a regulatory feedback loop as evidenced by its binding to RelA-mRNA and links it to quorum sensing and motility. CsrA is a central player in the carbon, amino acid, fatty acid metabolism and energy transfer and directly affects the biosynthesis of cofactors, vitamins and secondary metabolites. We describe the first L. pneumophila riboswitch, a thiamine pyrophosphate riboswitch whose regulatory impact is fine-tuned by CsrA, and identified a unique regulatory mode of CsrA, the active stabilization of RNA anti-terminator conformations inside a coding sequence preventing Rho-dependent termination of the gap operon through transcriptional polarity effects. This allows L. pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Thus the L. pneumophila genome has evolved to acclimate at least five different modes of regulation by CsrA giving it a truly unique position in its life cycle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。