Dual-inhibition of NAMPT and PAK4 induces anti-tumor effects in 3D-spheroids model of platinum-resistant ovarian cancer

双重抑制NAMPT和PAK4可在铂耐药卵巢癌的3D球体模型中诱导抗肿瘤作用

阅读:1
作者:Kei Kudo ,Yoshimi Endo Greer ,Teruhiko Yoshida ,Brittney S Harrington ,Soumya Korrapati ,Yusuke Shibuya ,Leah Henegar ,Jeffrey B Kopp ,Takeo Fujii ,Stanley Lipkowitz ,Christina M Annunziata

Abstract

Ovarian cancer follows a characteristic progression pattern, forming multiple tumor masses enriched with cancer stem cells (CSCs) within the abdomen. Most patients develop resistance to standard platinum-based drugs, necessitating better treatment approaches. Targeting CSCs by inhibiting NAD+ synthesis has been previously explored. Nicotinamide phosphoribosyltransferase (NAMPT), which is the rate limiting enzyme in the salvage pathway for NAD+ synthesis is an attractive drug target in this pathway. KPT-9274 is an innovative drug targeting both NAMPT and p21 activated kinase 4 (PAK4). However, its effectiveness against ovarian cancer has not been validated. Here, we show the efficacy and mechanisms of KPT-9274 in treating 3D-cultured spheroids that are resistant to platinum-based drugs. In these spheroids, KPT-9274 not only inhibited NAD+ production in NAMPT-dependent cell lines, but also suppressed NADPH and ATP production, indicating reduced mitochondrial function. It also downregulated of inflammation and DNA repair-related genes. Moreover, the compound reduced PAK4 activity by altering its mostly cytoplasmic localization, leading to NAD+-dependent decreases in phosphorylation of S6 Ribosomal protein, AKT, and β-Catenin in the cytoplasm. These findings suggest that KPT-9274 could be a promising treatment for ovarian cancer patients who are resistant to platinum drugs, emphasizing the need for precision medicine to identify the specific NAD+ producing pathway that a tumor relies upon before treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。