Significance
A strategy combining the principles of site-selective growth and steric restriction was developed to prepare a unique pushpin-like Au/CeO2 hybrid nanozyme with high catalytic activity and low steric hindrance. The hybrid nanozyme showed superior antitumor activity at both the cellular and tissue levels. Furthermore, the antitumor mechanism was investigated in terms of the differential proteins and their pathways using quantitative proteomics, thus promoting the translation of nanozymes to the clinic.
Statement of significance
A strategy combining the principles of site-selective growth and steric restriction was developed to prepare a unique pushpin-like Au/CeO2 hybrid nanozyme with high catalytic activity and low steric hindrance. The hybrid nanozyme showed superior antitumor activity at both the cellular and tissue levels. Furthermore, the antitumor mechanism was investigated in terms of the differential proteins and their pathways using quantitative proteomics, thus promoting the translation of nanozymes to the clinic.
