Gene therapy targeting miR‑212‑3p exerts therapeutic effects on MAFLD similar to those of exercise

针对 miR-212-3p 的基因治疗对 MAFLD 具有与运动相似的治疗效果

阅读:4
作者:Bo Sun, Yu Zhang, Minbo Zhang, Ruilin Liu, Wenzhuo Yang

Abstract

Exercise is the main treatment for patients with metabolic‑associated fatty liver disease (MAFLD); however, it may be difficult for some patients to adhere to or tolerate an exercise regime. Thus, finding a treatment alternative to exercise is of particular importance. The authors have previously demonstrated that the high expression of microRNA (miRNA/miR)‑212 promotes lipogenesis in vitro. The present study aimed to explore the therapeutic potential, as well as the mechanisms of action of miR‑212 in MAFLD. The expression of miR‑212‑3p, but not that of miR‑212‑5p, was found to be significantly elevated in MAFLD and to be decreased by exercise. Compared with exercise treatment, the inhibition of miR‑212‑3p expression in a mouse model fed a high‑fat diet exerted beneficial effects on MAFLD similar to those of exercise. Conversely, the overexpression of miR‑212‑3p abolished the ameliorative effects of exercise on MAFLD. Fibroblast growth factor 21 (FGF21) and chromodomain helicase DNA binding protein 1 (CHD1) were identified as target genes of miR‑212‑3p in lipid metabolism using bioinformatics analysis. Mechanistically, the inhibition of miR‑212‑3p mimicked the effects of exercise on lipid metabolism by regulating FGF21, but not CHD1. The exercise‑related transcription factor, early growth response 1 (EGR1), was identified upstream of miR‑212‑3p through promoter motif analysis. EGR1 overexpression inhibited miR‑212‑3p expression. The overexpression of miR‑212‑3p abolished the effects of exercise on lipid metabolism by exogenously attenuating the transcriptional repression of EGR1. Moreover, the overexpression of miR‑212‑3p abolished the regulatory effects of EGR1 on FGF21. On the whole, the present study demonstrates that miR‑212‑3p plays a key role in the effects of exercise on MAFLD. The findings presented herein suggest a potential therapeutic effect of targeting miR‑212‑3p in MAFLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。