β2AR against myocarditis-lipid deposition depends on estrogenic environment in stress

β2AR对抗心肌炎脂质沉积依赖于应激状态下的雌激素环境

阅读:20
作者:Xi Tao, Yaxin Xu, Joseph Adu-Amankwaah, Zheng Gong, Yuxuan Wang, Fei Huang, Hong Sun

Abstract

Cardiac lipid accumulation and inflammation have been linked to stress. There is mounting evidence that estrogen reduces lipid deposition and has anti-inflammatory properties; however, the exact mechanism is unknown. Recent studies showed that NLRP3 inflammasome is a key trigger of cardiac inflammation, and it is also involved in the progression of metabolic diseases. This study investigated the crucial role of the NLRP3 inflammasome in lipid accumulation during stress and the regulatory mechanism of estrogen in this process. Stress models were established by isoproterenol treatments in mice and H9c2 cells. With 5 mM isoproterenol, NLRP3 inflammasome activation was observed earlier at 0.5 h than that of lipid accumulation at 1 h in H9c2 cells. At 1 h after stress, the isoproterenol concentration required for NLRP3 inflammasome activation was lower compared to the concentration required for lipid deposition in mice myocardia and H9c2 cells; the former required 210 mg/kg or 10 μM for activation while the latter required 280 mg/kg or 5 mM. Knocking out or inhibiting NLRP3 inflammasome reduced myocardial lipid accumulation caused by stress in the mice myocardia and H9c2 cells. Estrogen downregulated NLRP3 inflammasome and reduced lipid accumulation in cardiomyocytes during stress. Finally, the anti-inflammatory and lipid-lowering effect of estrogen disappeared in β2ARKO mice and H9c2 cells pre-treated with ICI118,551. In conclusion, the upregulation of NLRP3 inflammasome induced by stress led to myocardial lipid accumulation, and β2AR downregulated NLRP3 inflammasome thereby reducing lipid accumulation which was dependent on the estrogenic environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。