Skeletal phenotype of the neuropeptide Y knockout mouse

神经肽Y基因敲除小鼠的骨骼表型

阅读:18
作者:Natalie K Y Wee, Benjamin P Sinder, Sanja Novak, Xi Wang, Chris Stoddard, Brya G Matthews, Ivo Kalajzic

Abstract

Neuropeptide Y (NPY) is involved in multiple processes such as behavior, energy and bone metabolism. Previous studies have relied on global NPY depletion to examine its effects on bone. However, this approach is unable to distinguish the central or local source of NPY influencing bone. Our aim was to identify which cells within the skeleton express Npy and establish a model that will enable us to differentiate effects of NPY derived from different cell types. We have generated the NPY floxed (NPYflox) mice using CRISPR technology. By crossing the NPYflox mice with Hypoxanthine Phosphoribosyltransferase 1 (Hprt)-cre to generate a global knockout, we were able to validate and confirm loss of Npy transcript and protein in our global NPYKO. Global deletion of NPY results in a smaller femoral cortical cross-sectional area (-12%) and reduced bone strength (-18%) in male mice. In vitro, NPY-deficient bone marrow stromal cells (BMSCs) showed increase in osteogenic differentiation detected by increases in alkaline phosphatase staining and bone sialoprotein and osteocalcin expression. Despite both sexes presenting with increased adiposity, female mice had no alterations in bone mass, suggesting that NPY may have sex-specific effects on bone. In this study we identified Npy expression in the skeleton and examined the effect of global NPY depletion to bone mass. The differential impact of NPY deletion in cortical and cancellous compartments along with differences in phenotypes between in vitro and in vivo, highlights the complex nature of NPY signaling, indicative of distinct sources that can be dissected in the future using this NPYflox model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。