Stiff-Elongated Balance of PLA-Based Polymer Blends

PLA 基聚合物共混物的刚性-伸长平衡

阅读:5
作者:Mónica Elvira Mendoza-Duarte, Iván Alziri Estrada-Moreno, Perla Elvia García-Casillas, Alejandro Vega-Rios

Abstract

In this study, polymer blends with a mechanical property balance based on poly(lactic acid) (PLA), stiff polymer, and elongated polymer were developed. First, the binary blends PLA-elongated polymer [ethyl vinyl acetate (EVA) or polyethylene], or PLA-stiff polymer [polystyrene or poly(styrene-co-methyl methacrylate) (SMMA)] blends were studied using dynamic mechanic analysis (DMA) and analyzed using Minitab statistical software to determine the factors influencing the elongation or stiffness of the blends. Then, ternary blends such as elongation-poly(lactic acid)-stiff, were made from the binary blends that presented optimal performance. In addition, three blends [EVA-PLA-SMMA (EPS)] were elaborated by studying the mixing time (5, 15, and 15 min) and the added time of the SMMA (0, 0, and 10 min). Specifically, the mixing time for EPS 1, EPS 2, and EPS 3 is 5 min, 15 min, and 15 min (first EVA + PLA for 10 min, plus 5 min PLA-EVA and SMMA), respectively. Mechanical, thermal, rheological, and morphological properties of the blends were studied. According to DMA, the results show an increase in elongation at break (εb) and do not decrease the elastic module of poly(lactic acid). Nevertheless, EPS 3 excels in all properties, with an εb of 67% and modulus of elasticity similar to PLA. SMMA has a significant role as a compatibilizing agent and improves PLA processability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。