Assembly chaperone Nas6 selectively destabilizes 26S proteasomes with defective regulatory particle-core particle interfaces

组装分子伴侣 Nas6 选择性地破坏具有缺陷调节颗粒-核心颗粒界面的 26S 蛋白酶体

阅读:5
作者:Jennifer L Warnock, Gabriel W Jobin, Sandhya Kumar, Robert J Tomko Jr

Abstract

The 26S proteasome is a 66-subunit-chambered protease present in all eukaryotes that maintains organismal health by degrading unneeded or defective proteins. Defects in proteasome function or assembly are known to contribute to the development of various cancers, neurodegeneration, and diabetes. During proteasome biogenesis, a family of evolutionarily conserved chaperones assembles a hexameric ring of AAA+ family ATPase subunits contained within the proteasomal regulatory particle (RP) and guide their docking onto the surface of the proteolytic core particle (CP). This RP-CP interaction couples the substrate capture and unfolding process to proteolysis. We previously reported a mutation in the proteasome that promoted dissociation of the RP and CP by one of these chaperones, Nas6. However, the nature of the signal for Nas6-dependent proteasome disassembly and the generality of this postassembly proteasome quality control function for Nas6 remain unknown. Here, we use structure-guided mutagenesis and in vitro proteasome disassembly assays to demonstrate that Nas6 more broadly destabilizes 26S proteasomes with a defective RP-CP interface. We show that Nas6 can promote dissociation of mature proteasomes into RP and CP in cells harboring defects on either side of the RP-CP interface. This function is unique to Nas6 and independent from other known RP assembly chaperones. Further biochemical experiments suggest that Nas6 may exploit a weakened RP-CP interface to dissociate the RP from the CP. We propose that this postassembly role of Nas6 may fulfill a quality control function in cells by promoting the recycling of functional subcomplexes contained within defective proteasomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。