Pro-arrhythmogenic Effects of the V141M KCNQ1 Mutation in Short QT Syndrome and Its Potential Therapeutic Targets: Insights from Modeling

V141M KCNQ1 突变在短 QT 综合征中的致心律失常作用及其潜在治疗靶点:来自建模的见解

阅读:6
作者:Hsiang-Chun Lee, Yoram Rudy, Hongwu Liang, Chih-Chieh Chen, Ching-Hsing Luo, Sheng-Hsiung Sheu, Jianmin Cui

Abstract

Gain-of-function mutations in the pore-forming subunit of IKs channels, KCNQ1, lead to short QT syndrome (SQTS) and lethal arrhythmias. However, how mutant IKs channels cause SQTS and the possibility of IKs-specific pharmacological treatment remain unclear. V141M KCNQ1 is a SQTS associated mutation. We studied its effect on IKs gating properties and changes in the action potentials (AP) of human ventricular myocytes. Xenopus oocytes were used to study the gating mechanisms of expressed V141M KCNQ1/KCNE1 channels. Computational models were used to simulate human APs in endocardial, mid-myocardial, and epicardial ventricular myocytes with and without β-adrenergic stimulation. V141M KCNQ1 caused a gain-of-function in IKs characterized by increased current density, faster activation, and slower deactivation leading to IKs accumulation. V141M KCNQ1 also caused a leftward shift of the conductance-voltage curve compared to wild type (WT) IKs (V1/2 = 33.6 ± 4.0 mV for WT, and 24.0 ± 1.3 mV for heterozygous V141M). A Markov model of heterozygous V141M mutant IKs was developed and incorporated into the O'Hara-Rudy model. Compared to the WT, AP simulations demonstrated marked rate-dependent shortening of AP duration (APD) for V141M, predicting a SQTS phenotype. Transmural electrical heterogeneity was enhanced in heterozygous V141M AP simulations, especially under β-adrenergic stimulation. Computational simulations identified specific IK1 blockade as a beneficial pharmacologic target for reducing the transmural APD heterogeneity associated with V141M KCNQ1 mutation. V141M KCNQ1 mutation shortens ventricular APs and enhances transmural APD heterogeneity under β-adrenergic stimulation. Computational simulations identified IK1 blockers as a potential antiarrhythmic drug of choice for SQTS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。