Electrophysiological and Pharmacological Analyses of Nav1.9 Voltage-Gated Sodium Channel by Establishing a Heterologous Expression System

通过建立异源表达系统对Nav1.9电压门控钠通道进行电生理和药理学分析

阅读:7
作者:Xi Zhou, Zhen Xiao, Yan Xu, Yunxiao Zhang, Dongfang Tang, Xinzhou Wu, Cheng Tang, Minzhi Chen, Xiaoliu Shi, Ping Chen, Songping Liang, Zhonghua Liu

Abstract

Nav1. 9 voltage-gated sodium channel is preferentially expressed in peripheral nociceptive neurons. Recent progresses have proved its role in pain sensation, but our understanding of Nav1.9, in general, has lagged behind because of limitations in heterologous expression in mammal cells. In this work, functional expression of human Nav1.9 (hNav1.9) was achieved by fusing GFP to the C-terminal of hNav1.9 in ND7/23 cells, which has been proved to be a reliable method to the electrophysiological and pharmacological studies of hNav1.9. By using the hNav1.9 expression system, we investigated the electrophysiological properties of four mutations of hNav1.9 (K419N, A582T, A842P, and F1689L), whose electrophysiological functions have not been determined yet. The four mutations significantly caused positive shift of the steady-state fast inactivation and therefore increased hNav1.9 activity, consistent with the phenotype of painful peripheral neuropathy. Meanwhile, the effects of inflammatory mediators on hNav1.9 were also investigated. Impressively, histamine was found for the first time to enhance hNav1.9 activity, indicating its vital role in hNav1.9 modulating inflammatory pain. Taken together, our research provided a useful platform for hNav1.9 studies and new insight into mechanism of hNav1.9 linking to pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。