Structural insights into the potency of SK channel positive modulators

SK 通道正调节剂效力的结构洞察

阅读:7
作者:Young-Woo Nam, Razan Orfali, Tingting Liu, Kunqian Yu, Meng Cui, Heike Wulff, Miao Zhang

Abstract

Small-conductance Ca2+-activated K+ (SK) channels play essential roles in the regulation of cellular excitability and have been implicated in neurological and cardiovascular diseases through both animal model studies and human genetic association studies. Over the past two decades, positive modulators of SK channels such as NS309 and 1-EBIO have been developed. Our previous structural studies have identified the binding pocket of 1-EBIO and NS309 that is located at the interface between the channel and calmodulin. In this study, we took advantage of four compounds with potencies varying over three orders of magnitude, including 1-EBIO, NS309, SKS-11 (6-bromo-5-methyl-1H-indole-2,3-dione-3-oxime) and SKS-14 (7-fluoro-3-(hydroxyimino)indolin-2-one). A combination of x-ray crystallographic, computational and electrophysiological approaches was utilized to investigate the interactions between the positive modulators and their binding pocket. A strong trend exists between the interaction energy of the compounds within their binding site calculated from the crystal structures, and the potency of these compounds in potentiating the SK2 channel current determined by electrophysiological recordings. Our results further reveal that the difference in potency of the positive modulators in potentiating SK2 channel activity may be attributed primarily to specific electrostatic interactions between the modulators and their binding pocket.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。