Integrative analysis of structural variations using short-reads and linked-reads yields highly specific and sensitive predictions

使用短读和链接读对结构变异进行综合分析可得到高度特异性和灵敏的预测

阅读:5
作者:Riccha Sethi, Julia Becker, Jos de Graaf, Martin Löwer, Martin Suchan, Ugur Sahin, David Weber

Abstract

Genetic diseases are driven by aberrations of the human genome. Identification of such aberrations including structural variations (SVs) is key to our understanding. Conventional short-reads whole genome sequencing (cWGS) can identify SVs to base-pair resolution, but utilizes only short-range information and suffers from high false discovery rate (FDR). Linked-reads sequencing (10XWGS) utilizes long-range information by linkage of short-reads originating from the same large DNA molecule. This can mitigate alignment-based artefacts especially in repetitive regions and should enable better prediction of SVs. However, an unbiased evaluation of this technology is not available. In this study, we performed a comprehensive analysis of different types and sizes of SVs predicted by both the technologies and validated with an independent PCR based approach. The SVs commonly identified by both the technologies were highly specific, while validation rate dropped for uncommon events. A particularly high FDR was observed for SVs only found by 10XWGS. To improve FDR and sensitivity, statistical models for both the technologies were trained. Using our approach, we characterized SVs from the MCF7 cell line and a primary breast cancer tumor with high precision. This approach improves SV prediction and can therefore help in understanding the underlying genetics in various diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。