MicroRNA-936 induces cell cycle arrest and inhibits glioma cell proliferation by targeting CKS1

MicroRNA-936 通过靶向 CKS1 诱导细胞周期停滞并抑制胶质瘤细胞增殖

阅读:6
作者:Dong Wang, Tongle Zhi, Xiupeng Xu, Zhongyuan Bao, Liang Fan, Zheng Li, Jing Ji, Ning Liu

Abstract

Accumulating evidence shows that microRNAs play important roles in cancers, including glioma. MiRNAs have been shown to participate in a variety of cellular functions including cell apoptosis, cell proliferation, neural development, and stem cell differentiation. Previous studies reported that miR-936 levels were downregulated in glioma specimens. Here, we further investigate the potential role of miR-936 in glioma. Quantitative reverse transcription-PCR was applied to detect the expression of mir-936 in glioma specimens. The direct targets of miR-936 were identified by bioinformatics analysis and were further validated by immunoblotting and luciferase reporter assay. The effects of miR-936 on glioma cell proliferation and cell cycle of glioma cells were analyzed by Cell-Counting Kit 8 assay, colony formation, 5-ethynyl-2-deoxyuridine (EDU) and flow cytometry assays. A xenograft model was used to study the effect of miR-936 on tumor growth and angiogenesis. Expression levels of miR-936 were greatly downregulated in glioma specimens, CKS1 was confirmed as a direct target of miR-936. The glioma cell cycle was blocked to G1 by negatively regulating CKS1 and its downstream signaling pathway, Akt-ERK1/2. Furthermore, overexpression of CKS1 rescued the inhibitory effects of miR-936. In vivo studies revealed that increased levels of miR-936 delayed the growth of tumors. Taken together, mir-936 may act as a glioma suppressor by targeting CKS1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。