CR4056, a powerful analgesic imidazoline-2 receptor ligand, inhibits the inflammation-induced PKCε phosphorylation and membrane translocation in sensory neurons

CR4056 是一种强效镇痛咪唑啉-2 受体配体,可抑制炎症诱导的感觉神经元 PKCε 磷酸化和膜转位

阅读:9
作者:Vittorio Vellani, Chiara Sabatini, Chiara Milia, Gianfranco Caselli, Marco Lanza, Ornella Letari, Lucio Claudio Rovati, Chiara Giacomoni

Background and purpose

CR4056 is a first-in-class imidazoline-2 (I2 ) receptor ligand characterized by potent analgesic activity in different experimental animal models of pain. In a recent phase II clinical trial, CR4056 effectively reduced pain in patients with knee osteoarthritis. In the present study, we investigated the effects of CR4056 on PKCε translocation in vitro and on PKCε activation in vivo in dorsal root ganglia (DRG) neurons. Experimental approach: Effects of CR4056 on bradykinin-induced PKCε translocation were studied in rat sensory neurons by immunocytochemistry. PKCε activation was investigated by immunohistochemistry analysis of DRG from complete Freund's adjuvant-treated animals developing local hyperalgesia. The analgesic activity of CR4056 was tested on the same animals. Key

Purpose

CR4056 is a first-in-class imidazoline-2 (I2 ) receptor ligand characterized by potent analgesic activity in different experimental animal models of pain. In a recent phase II clinical trial, CR4056 effectively reduced pain in patients with knee osteoarthritis. In the present study, we investigated the effects of CR4056 on PKCε translocation in vitro and on PKCε activation in vivo in dorsal root ganglia (DRG) neurons. Experimental approach: Effects of CR4056 on bradykinin-induced PKCε translocation were studied in rat sensory neurons by immunocytochemistry. PKCε activation was investigated by immunohistochemistry analysis of DRG from complete Freund's adjuvant-treated animals developing local hyperalgesia. The analgesic activity of CR4056 was tested on the same animals. Key

Results

CR4056 inhibited PKCε translocation with very rapid and long-lasting activity. CR4056 decreased hyperalgesia and phospho-PKCε immunoreactivity in the DRG neurons innervating the inflamed paw. The effect of CR4056 on PKCε translocation was blocked by pertussis toxin, implying that the intracellular pathways involved Gi proteins. The inhibition of PKCε translocation by CR4056 was independent of the α2 -adrenoeceptor and, surprisingly, was also independent of idazoxan-sensitive I2 binding sites. The I2 agonist 2BFI had no effect alone but potentiated the activity of low concentrations of CR4056. Conclusions and implications: Our results demonstrate that CR4056 shares the ability to inhibit PKCε translocation with other analgesics. Whether the inhibition of PKCε involves binding to specific subtype(s) of I2 receptors should be further investigated. If so, this would be a new mode of action of a highly specific I2 receptor ligand.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。