Immuno-Acoustic Sorting of Disease-Specific Extracellular Vesicles by Acoustophoretic Force

利用声泳力对疾病特异性细胞外囊泡进行免疫声学分选

阅读:2
作者:Junyuan Liu, Yuxin Qu, Han Wang

Abstract

Methods for the isolation and analysis of extracellular vesicles (EVs) have been extensively explored in the field of life science and in clinical diagnosis in recent years. The separation and efficient recovery of high-purity target EVs from biological samples are important prerequisites in the study of EVs. So far, commonly used methods of EV separation include ultracentrifugation, filtration, solvent precipitation and immunoaffinity capturing. However, these methods suffer from long processing time, EV damage and low enrichment efficiency. The use of acoustophoretic force facilitates the non-contact label-free manipulation of cells based on their size and compressibility but lacks specificity. Additionally, the acoustophoretic force exerted on sub-micron substances is normally weak and insufficient for separation. Here we present a novel immuno-acoustic sorting technology, where biological substances such as EVs, viruses, and biomolecules, can be specifically captured by antibody/receptor coated microparticles through immunoaffinity, and manipulated by an acoustophoretic force exerted on the microparticles. Using immuno-acoustic sorting technology, we successfully separated and purified HER2-positive EVs for further downstream analysis. This method holds great potential in isolating and purifying specific targets such as disease-related EVs from biological fluids and opens new possibilities for the EV-based early diagnosis and prognosis of diseases.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。