Excess Maternal Thyroxine Alters the Proliferative Activity and Angiogenic Profile of Growth Cartilage of Rats at Birth and Weaning

母体过量的甲状腺素改变大鼠出生和断奶时生长软骨的增殖活性和血管生成特征

阅读:7
作者:Lorena Gabriela Rocha Ribeiro, Juneo Freitas Silva, Natália de Melo Ocarino, Cíntia Almeida de Souza, Eliane Gonçalves de Melo, Rogéria Serakides

Abstract

Objective The aim of this study was to unravel the mechanisms by which thyroxine affects skeletal growth by evaluating proliferative activity and angiogenic profile of growth cartilage of neonatal and weanling rats. Methods Sixteen adult Wistar rats were equally divided into 2 groups: control and treated with thyroxine during pregnancy and lactation. The weight, measurement of plasma free T4 and thyroids, femurs' histomorphometric analysis, and proliferative activity and angiogenic profile by immunohistochemical or real-time reverse transcriptase-polymerase chain reaction in growth cartilage was performed. Data were analyzed using Student's t test. Results The free T4 was significantly higher in the treated rats. However, the height of the follicular epithelium of the thyroid in newborns was significantly lower in the treated group. The excess maternal thyroxine significantly reduced the body weight and length of the femur in the offspring but significantly increased the thickness of trabecular bone and changed the height of the zones of the growth plate. Furthermore, excess maternal thyroxine reduced cell proliferation and vascular endothelial growth factor (VEGF) expression in the growth cartilage of newborn and 20-day-old rats ( P < 0.05). There was also a reduction in the immunohistochemical expression of Tie2 in the cartilaginous epiphysis of the newborns and FLK-1 in the articular cartilage of 20-day-old rats. No significant difference was observed in Ang2 expression. Conclusions The excess maternal thyroxine during pregnancy and lactation reduced endochondral bone growth in the progeny and reduced the proliferation rate and VEGF, Flk-1, and Tie2 expression in the cartilage of growing rats without altering the mRNA expression of Ang1 and Ang2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。