Mechano-dependent sorbitol accumulation supports biomolecular condensate

机械依赖性山梨醇积累支持生物分子凝聚物

阅读:6
作者:Stephanie Torrino, William M Oldham, Andrés R Tejedor, Ignacio S Burgos, Nesrine Rachedi, Kéren Fraissard, Caroline Chauvet, Chaima Sbai, Brendan P O'Hara, Sophie Abélanet, Frederic Brau, Stephan Clavel, Rosana Collepardo-Guevara, Jorge R Espinosa, Issam Ben-Sahra, Thomas Bertero

Abstract

Biomolecular condensates regulate a wide range of cellular functions from signaling to RNA metabolism 1, 2 , yet, the physiologic conditions regulating their formation remain largely unexplored. Biomolecular condensate assembly is tightly regulated by the intracellular environment. Changes in the chemical or physical conditions inside cells can stimulate or inhibit condensate formation 3-5 . However, whether and how the external environment of cells can also regulate biomolecular condensation remain poorly understood. Increasing our understanding of these mechanisms is paramount as failure to control condensate formation and dynamics can lead to many diseases 6, 7 . Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo . We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol, but not glucose, concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacologic and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer - a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions. Altogether, we uncover molecular driving forces underlying protein phase transition and provide critical insights to understand the biological function and dysfunction of protein phase separation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。