Exercise increases Rho-kinase activity and insulin signaling in skeletal muscle

运动可增强骨骼肌中的 Rho 激酶活性和胰岛素信号

阅读:6
作者:Vitor R Muñoz, Rafael C Gaspar, Gabriel K Kuga, Alisson L da Rocha, Barbara M Crisol, José D Botezelli, Igor L Baptista, Rania A Mekary, Adelino S R da Silva, Dennys E Cintra, Leandro P de Moura, Eduardo R Ropelle, José R Pauli

Abstract

The effects of physical exercise on insulin signaling and glycemic homeostasis are not yet fully understood. Recent findings elucidated the positive role of Rho-kinase (Rock) in increasing the glucose uptake through insulin receptor substrate-1 (IRS1) phosphorylation in the skeletal muscle. Here, we explored the effects of short-term exercise on Rock activity and insulin signaling. Fischer 344 rats (3 months old) were subjected to a short-term swimming exercise for 2 hr per day for 5 days, with an overload corresponding to 1.5% of body weight. As expected, the exercised group had a reduced glycemia and increased insulin sensitivity. The contents of Rock1, Rock2, and Rock activity were improved in the skeletal muscle of the exercised rats. The contents of RhoA and RhoGEF, which are proteins involved in the Rock metabolism, were also increased in the skeletal muscle after exercise. These changes in the protein contents were accompanied by an increase in the insulin signaling pathway (pIRS1/pPDK/pAkt/pGSK3β/pAS160/GLUT4), Rock activity, and IRS1 phosphorylation at the 632/635 serine residues. On the other hand, when Rock was inhibited with the Y-27632, the insulin sensitivity in response to exercise was impaired. Based on these findings, we conclude that the short-term exercise increased both insulin sensitivity and glucose tolerance, through the increased Rock activity and pIRS1 (serine 632/635) mediated by Rock, in the skeletal muscle of Fischer 344 rats. These data represent an exercise-mediated novel mechanism, suggesting an essential role of Rock activity in the insulin signaling and glucose homeostasis improvement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。