Bioenergetic regulation of microglia

小胶质细胞的生物能量调节

阅读:7
作者:Soumitra Ghosh, Erika Castillo, Elma S Frias, Raymond A Swanson

Abstract

Microglia have diverse actions, ranging from synapse pruning in development to cytotoxic effects in disease. Brain energy metabolism and substrate availability vary under normal and disease states, but how these variations influence microglial function is relatively unknown. Microglia, like most other cell types, express the full complement of gene products required for both glycolytic and oxidative metabolism. Evidence suggests that microglia increase aerobic glycolysis and decrease respiration when activated by various stimuli. Mitochondrial function, glucose availability, and glycolytic rate influence pro-inflammatory gene expression at both transcriptional and post-translational levels. These effects are mediated through CtBP, an NADH-sensitive transcriptional co-repressor; through effects on NLRP3 inflammasome assembly and caspase-1 activation; through formation of advanced glycation end-products; and by less well-defined mechanisms. In addition to these transcriptional effects, microglial glucose metabolism is also required for superoxide production by NADPH oxidase, as glucose is the obligate substrate for regenerating NADPH in the hexose monophosphate shunt. Microglia also metabolize acetoacetate and β-hydroxybutyrate, which are generated during fasting or ketogenic diet, and respond to these ketones as metabolic signals. β-Hydroxybutyrate inhibits histone de-acetylases and activates microglial GRP109A receptors. These actions suppress microglia activation after brain injury and promote neuroprotective microglia phenotypes. As our understanding of microglial activation matures, additional links between energy metabolism and microglial function are likely to be identified.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。