SAR by Space: Enriching Hit Sets from the Chemical Space

空间 SAR:从化学空间丰富命中集

阅读:7
作者:Franca-Maria Klingler, Marcus Gastreich, Oleksandr O Grygorenko, Olena Savych, Petro Borysko, Anastasia Griniukova, Kateryna E Gubina, Christian Lemmen, Yurii S Moroz

Abstract

We introduce SAR-by-Space, a concept to drastically accelerate structure-activity relationship (SAR) elucidation by synthesizing neighboring compounds that originate from vast chemical spaces. The space navigation is accomplished within minutes on affordable standard computer hardware using a tree-based molecule descriptor and dynamic programming. Maximizing the synthetic accessibility of the results from the computer is achieved by applying a careful selection of building blocks in combination with suitably chosen reactions; a decade of in-house quality control shows that this is a crucial part in the process. The REAL Space is the largest chemical space of commercially available compounds, counting 11 billion molecules as of today. It was used to mine actives against bromodomain 4 (BRD4). Before synthesis, compounds were docked into the binding site using a scoring function, which incorporates intrinsic desolvation terms, thus avoiding time-consuming simulations. Five micromolecular hits have been identified and verified within less than six weeks, including the measurement of IC50 values. We conclude that this procedure is a substantial time-saver, accelerating both ligand- and structure-based approaches in hit generation and lead optimization stages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。