Oncogenic MYC amplifies mitotic perturbations

致癌 MYC 增强有丝分裂扰动

阅读:7
作者:Samantha Littler, Olivia Sloss, Bethany Geary, Andrew Pierce, Anthony D Whetton, Stephen S Taylor

Abstract

The oncogenic transcription factor MYC modulates vast arrays of genes, thereby influencing numerous biological pathways including biogenesis, metabolism, proliferation, apoptosis and pluripotency. When deregulated, MYC drives genomic instability via several mechanisms including aberrant proliferation, replication stress and ROS production. Deregulated MYC also promotes chromosome instability, but less is known about how MYC influences mitosis. Here, we show that deregulating MYC modulates multiple aspects of mitotic chromosome segregation. Cells overexpressing MYC have altered spindle morphology, take longer to align their chromosomes at metaphase and enter anaphase sooner. When challenged with a variety of anti-mitotic drugs, cells overexpressing MYC display more anomalies, the net effect of which is increased micronuclei, a hallmark of chromosome instability. Proteomic analysis showed that MYC modulates multiple networks predicted to influence mitosis, with the mitotic kinase PLK1 identified as a central hub. In turn, we show that MYC modulates several PLK1-dependent processes, namely mitotic entry, spindle assembly and SAC satisfaction. These observations thus underpin the pervasive nature of oncogenic MYC and provide a mechanistic rationale for MYC's ability to drive chromosome instability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。