IgA nephropathy: gut microbiome regulates the production of hypoglycosilated IgA1 via the TLR4 signaling pathway

IgA 肾病:肠道微生物群通过 TLR4 信号通路调节低糖基化 IgA1 的产生

阅读:24
作者:Yifan Zhu, Haidong He, Weiqian Sun, Jiajun Wu, Yong Xiao, Yinshun Peng, Ping Hu, Meiping Jin, Ping Liu, DongLiang Zhang, Ting Xie, Lusheng Huang, Weiming He, Minggang Wei, Lishun Wang, Xudong Xu, Yuyan Tang

Background

Immunoglobulin A nephropathy (IgAN) is a major cause of primary glomerulonephritis characterized by mesangial deposits of galactose-deficient IgA1 (Gd-IgA1). Toll-like receptors (TLRs), particularly TLR4, are involved in the pathogenesis of IgAN. The role of gut microbiota on IgAN patients was recently investigated. However, whether gut microbial modifications of Gd-IgA1 through TLR4 play a role in IgAN remains unclear.

Conclusions

Our results illustrated that the gut-kidney axis is involved in the pathogenesis of IgAN. Gut dysbiosis could stimulate the overproduction of Gd-IgA1 via TLR4 signaling pathway production and B-cell stimulators.

Methods

We recruited subjects into four groups, including 48 patients with untreated IgAN, 22 treated IgAN patients (IgANIT), 22 primary membranous nephropathy and 31 healthy controls (HCs). Fecal samples were collected to analyze changes in gut microbiome. Gd-IgA1 levels, expression of TLR4, B-cell stimulators and intestinal barrier function were evaluated in all subjects. C57BL/6 mice were treated with a broad-spectrum antibiotic cocktail to deplete the gut microbiota and then gavaged with fecal microbiota transplanted from clinical subjects of every group. Gd-IgA1 and TLR4 pathway were detected in peripheral blood mononuclear cells (PBMCs) from IgAN and HCs co-incubated with lipopolysaccharide (LPS) and TLR4 inhibitor.

Results

Compared with the other three groups, different compositions and decreased diversity demonstrated gut dysbiosis in the untreated IgAN group, especially the enrichment of Escherichia-Shigella. Elevated Gd-IgA1 levels were found in untreated IgAN patients and correlated with gut dysbiosis, TLR4, B-cell stimulators, indexes of intestinal barrier damage and proinflammatory cytokines. In vivo, mice colonized with gut microbiota from IgAN and IgANIT patients mimicked the IgAN phenotype with the activation of TLR4/MyD88/nuclear factor-κB pathway and B-cell stimulators in the intestine, and had with enhanced proinflammatory cytokines. In vitro, LPS activated TLR4/MyD88/NF-κB pathway, B-cell stimulators and proinflammatory cytokines in PBMCs of IgAN patients. This process may induce the overproduction of Gd-IgA1, which was inhibited by TLR4 inhibitors. Conclusions: Our results illustrated that the gut-kidney axis is involved in the pathogenesis of IgAN. Gut dysbiosis could stimulate the overproduction of Gd-IgA1 via TLR4 signaling pathway production and B-cell stimulators.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。