Downregulation of TMEM16A calcium-activated chloride channel contributes to cerebrovascular remodeling during hypertension by promoting basilar smooth muscle cell proliferation

TMEM16A 钙激活氯通道下调促进基底平滑肌细胞增殖,从而促进高血压期间脑血管重塑

阅读:5
作者:Mi Wang, Hui Yang, Ling-Yun Zheng, Zheng Zhang, Yong-Bo Tang, Guan-Lei Wang, Yan-Hua Du, Xiao-Fei Lv, Jie Liu, Jia-Guo Zhou, Yong-Yuan Guan

Background

The Ca(2+)-activated chloride channel (CaCC) plays an important role in a variety of physiological functions. In vascular smooth muscle cells, CaCC is involved in the regulation of agonist-stimulated contraction and myogenic tone. The physiological functions of CaCC in blood vessels are not fully revealed because of the lack of specific channel blockers and the uncertainty concerning its molecular identity.

Conclusions

TMEM16A CaCC is a negative regulator of cell proliferation. Downregulation of CaCC may play an important role in hypertension-induced cerebrovascular remodeling, suggesting that modification of the activity of CaCC may be a novel therapeutic strategy for hypertension-associated cardiovascular diseases such as stroke.

Results

Whole-cell patch-clamp studies showed that knockdown of TMEM16A but not bestrophin-3 attenuated CaCC currents in rat basilar smooth muscle cells. The activity of CaCC in basilar smooth muscle cells isolated from 2-kidney, 2-clip renohypertensive rats was decreased, and CaCC activity was negatively correlated with blood pressure (n=25; P<0.0001) and medial cross-sectional area (n=24; P<0.0001) in basilar artery during hypertension. Both upregulation of CaMKII activity and downregulation of TMEM16A expression contributed to the reduction of CaCC in the hypertensive basilar artery. Western blot results demonstrated that angiotensin II repressed TMEM16A expression in basilar smooth muscle cells (n=6; P<0.01). Knockdown of TMEM16A facilitated and overexpression of TMEM16A inhibited angiotensin II-induced cell cycle transition and cell proliferation determined by flow cytometry and BrdU incorporation (n=6 in each group; P<0.05). TMEM16A affected cell cycle progression mainly through regulating the expression of cyclin D1 and cyclin E. Conclusions: TMEM16A CaCC is a negative regulator of cell proliferation. Downregulation of CaCC may play an important role in hypertension-induced cerebrovascular remodeling, suggesting that modification of the activity of CaCC may be a novel therapeutic strategy for hypertension-associated cardiovascular diseases such as stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。