Downregulation of MicroRNA-222 Reduces Insulin Resistance in Rats with PCOS by Inhibiting Activation of the MAPK/ERK Pathway via Pten

MicroRNA-222 下调可通过抑制 Pten 激活 MAPK/ERK 通路来降低 PCOS 大鼠的胰岛素抵抗

阅读:4
作者:Hong Ye, Xiu-Juan Liu, Yan Hui, Yang-Huan Liang, Cai-Hong Li, Qiong Wan

Abstract

Polycystic ovary syndrome (PCOS), characterized by the dysfunction of endocrine metabolism, is a common disease among women. Insulin (INS) resistance (IR) is considered as an obstruction to effective PCOS treatment. Here, we aimed to explore the mechanism by which microRNA-222 (miR-222) affects IR in PCOS via Pten. Quantitative reverse transcription-polymerase chain reaction and western blot assays indicated that miR-222 expression was higher in the peripheral blood of PCOS patients with IR than in PCOS patients without IR, while Pten expression was lower. Further mechanistic analysis identified Pten as a target gene of miR-222. Moreover, PCOS rat models were established through the administration of dehydroepiandrosterone and were subsequently treated with miR-222 agomir, miR-222 antagomir, or Pten overexpression plasmid. The inhibition of miR-222 improved ovarian morphology, enhanced the production of serum sex hormones (follicle-stimulating hormone [FSH], luteotropic hormone [LH], estradiol 2 [E2], prolactin [PRL], and testosterone [T]), increased the levels of glucose metabolism indicators (homeostasis model of assessment for IR [HOMA-IR], blood glucose [BG]120min, and INS120min), and reduced the production of progesterone in the PCOS rats. Notably, miR-222 downregulation resulted in the inactivation of the mitogen-activated protein kinase (MAPK)/ERK pathway by upregulating Pten. Collectively, miR-222 inhibition might reduce IR in PCOS by inactivating the MAPK/ERK pathway and elevating Pten expression, which indicates miR-222 as a promising target for PCOS treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。