The Synovium Attenuates Cartilage Degeneration in KOA through Activation of the Smad2/3-Runx1 Cascade and Chondrogenesis-related miRNAs

滑膜通过激活 Smad2/3-Runx1 级联和软骨形成相关 miRNA 减轻 KOA 中的软骨退变

阅读:5
作者:Xiaoyi Zhao, Fangang Meng, Shu Hu, Zibo Yang, Hao Huang, Rui Pang, Xingzhao Wen, Yan Kang, Zhiqi Zhang

Abstract

Knee osteoarthritis (KOA) is a highly prevalent disabling joint disease in aged people. Progressive cartilage degradation is the hallmark of KOA, but its deeper mechanism remains unclear. Substantial evidence indicates the importance of the synovium for joint homeostasis. The present study aimed to determine whether the synovium regulates cartilage metabolism through chondrogenesis-related microRNAs (miRNAs) in the KOA microenvironment. Clinical sample testing and in vitro cell experiments screened out miR-455 and miR-210 as effective miRNAs. The levels of both were significantly reduced in KOA cartilage but increased in KOA synovial fluid compared with controls. We further revealed that transforming growth factor β1 (TGF-β1) can significantly upregulate miR-455 and miR-210 expression in synoviocytes. The upregulated miRNAs can be secreted into the extracellular environment and prevent cartilage degeneration. Through bioinformatics and in vitro experiments, we found that Runx1 can bind to the promoter regions of miR-455 and miR-210 and enhance their transcription in TGF-β1-treated synoviocytes. Collectively, our findings demonstrate a protective effect of the synovium against cartilage degeneration mediated by chondrogenesis-related miRNAs, which suggests that Runx1 is a potential target for KOA therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。