Aquatic Hyphomycete Taxonomic Relatedness Translates into Lower Genetic Divergence of the Nitrate Reductase Gene

水生丝状菌分类学相关性转化为硝酸还原酶基因的较低遗传分化

阅读:5
作者:Joana Mariz, Ricardo Franco-Duarte, Fernanda Cássio, Cláudia Pascoal, Isabel Fernandes

Abstract

Aquatic hyphomycetes are key microbial decomposers in freshwater that are capable of producing extracellular enzymes targeting complex molecules of leaf litter, thus, being crucial to nutrient cycling in these ecosystems. These fungi are also able to assimilate nutrients (e.g., nitrogen) from stream water, immobilizing these nutrients in the decomposing leaf litter and increasing its nutritional value for higher trophic levels. Evaluating the aquatic hyphomycete functional genetic diversity is, thus, pivotal to understanding the potential impacts of biodiversity loss on nutrient cycling in freshwater. In this work, the inter- and intraspecific taxonomic (ITS1-5.8S-ITS2 region) and functional (nitrate reductase gene) diversity of 40 aquatic hyphomycete strains, belonging to 23 species, was evaluated. A positive correlation was found between the taxonomic and nitrate reductase gene divergences. Interestingly, some cases challenged this trend: Dactylella cylindrospora (Orbiliomycetes) and Thelonectria rubi (Sordariomycetes), which were phylogenetically identical but highly divergent regarding the nitrate reductase gene; and Collembolispora barbata (incertae sedis) and Tetracladium apiense (Leotiomycetes), which exhibited moderate taxonomic divergence but no divergence in the nitrate reductase gene. Additionally, Tricladium chaetocladium (Leotiomycetes) strains were phylogenetically identical but displayed a degree of nitrate reductase gene divergence above the average for the interspecific level. Overall, both inter- and intraspecific functional diversity were observed among aquatic hyphomycetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。