Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction

心脏衰老是由基质金属蛋白酶-9介导的内皮功能障碍引发的

阅读:8
作者:Andriy Yabluchanskiy, Yonggang Ma, Ying Ann Chiao, Elizabeth F Lopez, Andrew P Voorhees, Hiroe Toba, Michael E Hall, Hai-Chao Han, Merry L Lindsey, Yu-Fang Jin

Abstract

Aging is linked to increased matrix metalloproteinase-9 (MMP-9) expression and extracellular matrix turnover, as well as a decline in function of the left ventricle (LV). Previously, we demonstrated that C57BL/6J wild-type (WT) mice > 18 mo of age show impaired diastolic function, which was attenuated by MMP-9 deletion. To evaluate mechanisms that initiate the development of cardiac dysfunction, we compared the LVs of 6-9- and 15-18-mo-old WT and MMP-9 null (Null) mice. All groups showed similar LV function by echocardiography, indicating that dysfunction had not yet developed in the older group. Myocyte nuclei numbers and cross-sectional areas increased in both WT and Null 15-18-mo mice compared with young controls, indicating myocyte hypertrophy. Myocyte hypertrophy leads to an increased oxygen demand, and both WT and Null 15-18-mo mice showed an increase in angiogenic signaling. Plasma proteomic profiling and LV analysis revealed a threefold increase in von Willebrand factor and fivefold increase in vascular endothelial growth factor in WT 15-18-mo mice, which were further elevated in Null mice. In contrast to the upregulation of angiogenic stimulating factors, actual LV vessel numbers increased only in the 15-18-mo Null LV. The 15-18-mo WT showed amplified expression of inflammatory genes related to angiogenesis, including C-C chemokine receptor (CCR)7, CCR10, interleukin (IL)-1f8, IL-13, and IL-20 (all, P < 0.05), and these increases were blunted by MMP-9 deletion (all, P < 0.05). To measure vascular permeability as an index of endothelial function, we injected mice with FITC-labeled dextran. The 15-18-mo WT LV showed increased vascular permeability compared with young WT controls and 15-18-mo Null mice. Combined, our findings revealed that MMP-9 deletion improves angiogenesis, attenuates inflammation, and prevents vascular leakiness in the setting of cardiac aging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。