Chryseriol attenuates the progression of OVA-induced asthma in mice through NF-κB/HIF-1α and MAPK/STAT1 pathways

Chryseriol 通过 NF-κB/HIF-1α 和 MAPK/STAT1 通路减缓小鼠 OVA 诱发哮喘的进展

阅读:4
作者:Shangyao Mo, Hao Deng, Yong Xie, Lixia Yang, Lili Wen

Background

Asthma is a hackneyed chronic inflammatory disease of the airway. Chryseriol (CSR) is a kind of flavonoid, and has the effect of bronchiectasis, indicating its potential application for treating respiratory diseases. However, the functions of CSR in asthma have not been reported till now. Materials and

Conclusion

Our findings proved that CSR attenuated the progression of OVA-induced asthma in mice through inhibiting NF-κB/HIF-1α and MAPK/STAT1 pathways. This work might highlight the functions of CSR in the treatment of asthma.

Methods

The histopathologic changes of the lung tissues were assessed by hematoxylin and eosin staining. The cell apoptosis was identified through terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay. Total numbers of eosinophils, neutrophils, and macrophages were assessed under microscope. The levels of interleukin (IL)-1β, IL-4, IL-5, and IL-13 were detected by enzyme-linked-immunosorbent serologic assay. The airway hyper-responsiveness (AHR) was evaluated by the whole body plethysmography. The levels of methane dicarboxylic aldehyde, superoxide dismutase, glutathione S-transferase, and glutathione in lung homogenates were confirmed by using corresponding commercial kits. The protein expressions were examined by Western blot analysis.

Results

The ovalbumin (OVA) was utilized to establish asthma mouse model. At first, it was revealed that CSR treatment reduced lung injury in OVA-stimulated mice. Moreover, cell apoptosis was enhanced after OVA stimulation but was attenuated by CSR treatment. In addition, CSR treatment decreased the infiltration of inflammatory cells and the production of inflammatory factors in OVA-treated mice. Further investigations demonstrated that CSR treatment relieved AHR in OVA-stimulated mice. The oxidative stress was strengthened in OVA-treated mice, but these effects were relieved by CSR treatment. Lastly, it was discovered that CSR treatment retarded nuclear factor kappa B (NF-κB)/hypoxia-inducible factor 1 alpha (HIF-1α) and p38 mitogen-activated protein kinase (MAPK)/signal transducer and activator of transcription 1 (STAT1) pathways in OVA-triggered asthma mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。