A dual inhibitor targeting HMG-CoA reductase and histone deacetylase mitigates neurite degeneration in LRRK2-G2019S parkinsonism

针对 HMG-CoA 还原酶和组蛋白去乙酰化酶的双重抑制剂可减轻 LRRK2-G2019S 帕金森病中的神经突退化

阅读:6
作者:Chin-Hsien Lin, Han-Yi Lin, Jim-Min Fang, Ching-Chow Chen

Abstract

Parkinson's disease (PD) is among the most common neurodegenerative disorders, and its etiology involves both genetic and environmental factors. The leucine-rich repeat kinase (LRRK2) G2019S mutation is the most common genetic cause of familial and sporadic PD. Current treatment is limited to dopaminergic supplementation, as no disease-modifying therapy is available yet. Recent evidence reveals that HMG-CoA reductase (HMGR) inhibitors (statins) exert neuroprotection through anti-neuroinflammatory effects, and histone deacetylase (HDAC) inhibitors mitigate neurodegeneration by promoting the transcription of neuronal survival factors. We designed and synthesized a dual inhibitor, statin hydroxamate JMF3086, that simultaneously inhibits HMGR and HDAC, and examined its neuroprotective effects on LRRK2-G2019S parkinsonism. JMF3086 restored dopaminergic neuron loss in aged LRRK2-G2019S flies and rescued neurite degeneration in primary hippocampal and dopaminergic neurons isolated from transgenic LRRK2-G2019S mice. The molecular mechanisms included downregulation of ERK1/2 phosphorylation, increased anti-apoptotic Akt phosphorylation, and inhibition of GSK3β activity to maintain cytoskeletal stability in stably transfected LRRK2-G2019S SH-SY5Y human dopaminergic cells. JMF3086 also promoted a-tubulin acetylation and kinesin-1 expression, facilitating antegrade mitochondrial transport in axons. Our findings demonstrate that JMF3086 exerted beneficial effects on restoring LRRK2-G2019S neurite degeneration by maintaining microtubule stability. This dual-target compound may be a promising mechanism-based therapy for PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。