PRC2 Is Dispensable in Vivo for β-Catenin-Mediated Repression of Chondrogenesis in the Mouse Embryonic Cranial Mesenchyme

PRC2 在体内对于 β-Catenin 介导的小鼠胚胎颅骨间充质软骨形成的抑制是可有可无的

阅读:8
作者:James Ferguson, Mahima Devarajan, Gregg DiNuoscio, Alina Saiakhova, Chia-Feng Liu, Veronique Lefebvre, Peter C Scacheri, Radhika P Atit

Abstract

A hallmark of craniofacial development is the differentiation of multiple cell lineages in close proximity to one another. The mouse skull bones and overlying dermis are derived from the cranial mesenchyme (CM). Cell fate selection of the embryonic cranial bone and dermis in the CM requires Wnt/β-catenin signaling, and loss of β-catenin leads to an ectopic chondrogenic cell fate switch. The mechanism by which Wnt/β-catenin activity suppresses the cartilage fate is unclear. Upon conditional deletion of β-catenin in the CM, several key determinants of the cartilage differentiation program, including Sox9, become differentially expressed. Many of these differentially expressed genes are known targets of the Polycomb Repressive Complex 2 (PRC2). Thus, we hypothesized that PRC2 is required for Wnt/β-catenin-mediated repression of chondrogenesis in the embryonic CM. We find that β-catenin can physically interact with PRC2 components in the CM in vivo However, upon genetic deletion of Enhancer of Zeste homolog 2 (EZH2), the catalytic component of PRC2, chondrogenesis remains repressed and the bone and dermis cell fate is preserved in the CM. Furthermore, loss of β-catenin does not alter either the H3K27me3 enrichment levels genome-wide or on cartilage differentiation determinants, including Sox9 Our results indicate that EZH2 is not required to repress chondrogenesis in the CM downstream of Wnt/β-catenin signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。