Bioremediation of Per- and Poly-Fluoroalkyl Substances (PFAS) by Synechocystis sp. PCC 6803: A Chassis for a Synthetic Biology Approach

利用集胞藻 PCC 6803 对全氟和多氟烷基物质 (PFAS) 进行生物修复:合成生物学方法的基础

阅读:6
作者:Francesca Marchetto, Marco Roverso, Davide Righetti, Sara Bogialli, Francesco Filippini, Elisabetta Bergantino, Eleonora Sforza

Abstract

One of the main concerns in industrialized countries is represented by per- and poly-fluoroalkyl substances (PFAS), persistent contaminants hardly to be dealt with by conventional wastewater treatment processes. Phyco-remediation was proposed as a green alternative method to treat wastewater. Synechocystis sp. PCC6803 is a unicellular photosynthetic organism candidate for bioremediation approaches based on synthetic biology, as it is able to survive in a wide range of polluted waters. In this work, we assessed the possibility of applying Synechocystis in PFAS-enriched waters, which was never reported in the previous literature. Respirometry was applied to evaluate short-term toxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), which did not affect growth up to 0.5 and 4 mg L-1, respectively. Continuous and batch systems were used to assess the long-term effects, and no toxicity was highlighted for both compounds at quite high concentration (1 mg L-1). A partial removal was observed for PFOS and PFOA, (88% and 37%, with removal rates of about 0.15 and 0.36 mg L-1 d-1, respectively). Measurements in fractionated biomass suggested a role for Synechocystis in the sequestration of PFAS: PFOS is mainly internalized in the cell, while PFOA is somehow transformed by still unknown pathways. A preliminary bioinformatic search gave hints on transporters and enzymes possibly involved in such sequestration/transformation processes, opening the route to metabolic engineering in the perspective application of this cyanobacterium as a new phyco-remediation tool, based on synthetic biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。