Inflammatory muscle pain is dependent on the activation of kinin B₁ and B₂ receptors and intracellular kinase pathways

炎症性肌肉疼痛依赖于激肽 B₁ 和 B₂ 受体以及细胞内激酶通路的激活

阅读:6
作者:F C Meotti, R Campos, Kabs da Silva, A F Paszcuk, R Costa, J B Calixto

Background and purpose

B(1) and B(2) kinin receptors are involved in pain transmission but they may have different roles in the muscle pain induced by intense exercise or inflammation. We investigated the contribution of each of these receptors, and the intracellular pathways involved, in the initial development and maintenance of the muscle pain associated with inflammation-induced tissue damage. Experimental approach: Mechanical hyperalgesia was measured using the Randall-Selitto apparatus after injecting 5% formalin solution into the gastrocnemius muscle in mice treated with selective antagonists for B(1) or B(2) receptors. The expression of kinin receptors and cytokines and the activation of intracellular kinases were monitored by real-time PCR and immunohistochemistry. Key

Purpose

B(1) and B(2) kinin receptors are involved in pain transmission but they may have different roles in the muscle pain induced by intense exercise or inflammation. We investigated the contribution of each of these receptors, and the intracellular pathways involved, in the initial development and maintenance of the muscle pain associated with inflammation-induced tissue damage. Experimental approach: Mechanical hyperalgesia was measured using the Randall-Selitto apparatus after injecting 5% formalin solution into the gastrocnemius muscle in mice treated with selective antagonists for B(1) or B(2) receptors. The expression of kinin receptors and cytokines and the activation of intracellular kinases were monitored by real-time PCR and immunohistochemistry. Key

Results

The i.m. injection of formalin induced an overexpression of B(1) and B(2) receptors. This overexpression was associated with the mechanical hyperalgesia induced by formalin because treatment with B(1) receptor antagonists (des-Arg(9) [Leu(8)]-BK, DALBK, and SSR240612) or B(2) receptor antagonists (HOE 140 and FR173657) prevented the hyperalgesia. Formalin increased myeloperoxidase activity, and up-regulated TNF-α, IL-1β and IL-6 in gastrocnemius. Myeloperoxidase activity and TNF-α mRNA expression were inhibited by either DALBK or HOE 140, whereas IL-6 was inhibited only by HOE 140. The hyperalgesia induced by i.m. formalin was dependent on the activation of intracellular MAPKs p38, JNK and PKC. Conclusions and implications: Inflammatory muscle pain involves a cascade of events that is dependent on the activation of PKC, p38 and JNK, and the synthesis of IL-1β, TNF-α and IL-6 associated with the up-regulation of both B(1) and B(2) kinin receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。