Bacterial persistence increases as environmental fitness decreases

环境适应度下降,细菌持久性增强

阅读:7
作者:Seok Hoon Hong, Xiaoxue Wang, Hazel F O'Connor, Michael J Benedik, Thomas K Wood

Abstract

Since persister cells cause chronic infections and since Escherichia coli toxin MqsR increases persisters, we used protein engineering to increase the toxicity of MqsR to gain insights into persister cell formation. Through two amino acid replacements that increased the stability of MqsR, toxicity and persistence were increased. A whole-transcriptome study revealed that the MqsR variant increased persistence by repressing genes for acid resistance, multidrug resistance and osmotic resistance. Corroborating these microarray results, deletion of rpoS, as well as the genes that the master stress response regulator RpoS controls, increased persister formation dramatically to the extent that nearly the whole population became persistent. Furthermore, wild-type cells stressed by prior treatment to acid or hydrogen peroxide increased persistence 12 000-fold. Whole-transcriptome analyses of persister cells generated by two different methods (wild-type cells pretreated with hydrogen peroxide and the rpoS deletion) corroborated the importance of suppressing RpoS in persister cell formation. Therefore, the more toxic MqsR increases persistence by decreasing the ability of the cell to respond to antibiotic stress through its RpoS-based regulation of acid resistance, multidrug resistance and osmotic resistance systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。