The Mechanism of Mitochondrial Injury in Alpha-1 Antitrypsin Deficiency Mediated Liver Disease

线粒体损伤在 Alpha-1 抗胰蛋白酶缺乏症介导的肝病中的机制

阅读:8
作者:Nazli Khodayari, Rejean L Wang, Regina Oshins, Yuanqing Lu, Michael Millett, Alek M Aranyos, Sayedamin Mostofizadeh, Yogesh Scindia, Tammy O Flagg, Mark Brantly

Abstract

Alpha-1 antitrypsin deficiency (AATD) is caused by a single mutation in the SERPINA1 gene, which culminates in the accumulation of misfolded alpha-1 antitrypsin (ZAAT) within the endoplasmic reticulum (ER) of hepatocytes. AATD is associated with liver disease resulting from hepatocyte injury due to ZAAT-mediated toxic gain-of-function and ER stress. There is evidence of mitochondrial damage in AATD-mediated liver disease; however, the mechanism by which hepatocyte retention of aggregated ZAAT leads to mitochondrial injury is unknown. Previous studies have shown that ER stress is associated with both high concentrations of fatty acids and mitochondrial dysfunction in hepatocytes. Using a human AAT transgenic mouse model and hepatocyte cell lines, we show abnormal mitochondrial morphology and function, and dysregulated lipid metabolism, which are associated with hepatic expression and accumulation of ZAAT. We also describe a novel mechanism of ZAAT-mediated mitochondrial dysfunction. We provide evidence that misfolded ZAAT translocates to the mitochondria for degradation. Furthermore, inhibition of ZAAT expression restores the mitochondrial function in ZAAT-expressing hepatocytes. Altogether, our results show that ZAAT aggregation in hepatocytes leads to mitochondrial dysfunction. Our findings suggest a plausible model for AATD liver injury and the possibility of mechanism-based therapeutic interventions for AATD liver disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。