Conclusion
EA reduced the progression of the morphological transformations and concomitantly suppressed the expression of fibrotic- and EMT-related proteins in vitro and in vivo. These findings improved our understanding of the role of EA in suppressing renal fibrogenesis and demonstrated the promising role EA may play in the management of chronic kidney disease.
Methods
We used an in vivo mouse unilateral ureteral obstruction (UUO) model and an in vitro model with HK-2 cell lines treated with EA and transforming growth factor β1 (TGF-β1). The expression of epithelial-to-mesenchymal transition (EMT)-related proteins of UUO mice was examined using immunohistochemical staining. Liver function and renal function were evaluated using biochemical testing. Western blot analysis was used to determine the proteins related to EMT, and MTT assay was used to determine cell viability.
Results
In UUO mice fed EA, both microscopical examination with immunohistochemical staining and western blotting protein analysis showed reduced expression of fibrotic (α-SMA, fibronectin, and collagen I)- and EMT (vimentin and N-cadherin)-related proteins, compared with sham control. In HK-2 cells treated with TGF-β1, EA decreased motility as well as expression of α-SMA, collagen-I, fibronectin, N-cadherin, and vimentin.
