Calcium Signaling in the Cerebellar Radial Glia and Its Association with Morphological Changes during Zebrafish Development

小脑放射状胶质细胞中的钙信号及其与斑马鱼发育过程中形态变化的关系

阅读:11
作者:Elizabeth Pereida-Jaramillo, Gabriela B Gómez-González, Angeles Edith Espino-Saldaña, Ataúlfo Martínez-Torres

Abstract

Radial glial cells are a distinct non-neuronal cell type that, during development, span the entire width of the brain walls of the ventricular system. They play a central role in the origin and placement of neurons, since their processes form structural scaffolds that guide and facilitate neuronal migration. Furthermore, glutamatergic signaling in the radial glia of the adult cerebellum (i.e., Bergmann glia), is crucial for precise motor coordination. Radial glial cells exhibit spontaneous calcium activity and functional coupling spread calcium waves. However, the origin of calcium activity in relation to the ontogeny of cerebellar radial glia has not been widely explored, and many questions remain unanswered regarding the role of radial glia in brain development in health and disease. In this study we used a combination of whole mount immunofluorescence and calcium imaging in transgenic (gfap-GCaMP6s) zebrafish to determine how development of calcium activity is related to morphological changes of the cerebellum. We found that the morphological changes in cerebellar radial glia are quite dynamic; the cells are remarkably larger and more elaborate in their soma size, process length and numbers after 7 days post fertilization. Spontaneous calcium events were scarce during the first 3 days of development and calcium waves appeared on day 5, which is associated with the onset of more complex morphologies of radial glia. Blockage of gap junction coupling inhibited the propagation of calcium waves, but not basal local calcium activity. This work establishes crucial clues in radial glia organization, morphology and calcium signaling during development and provides insight into its role in complex behavioral paradigms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。