New Cu(II), Mn(II) and Mn(III) Schiff base complexes cause noncovalent interactions: X-ray crystallography survey, Hirshfeld surface analysis and molecular simulation investigation against SARS-CoV-2

新型 Cu(II)、Mn(II) 和 Mn(III) 席夫碱配合物引起非共价相互作用:针对 SARS-CoV-2 的 X 射线晶体学调查、Hirshfeld 表面分析和分子模拟调查

阅读:19
作者:Soraya Sepehrfar, Mehdi Salehi, Sakineh Parvarinezhad, Anita M Grześkiewicz, Maciej Kubicki

Abstract

In this study, polynuclear Cu(II) complex (1), Mn(II) and Mn(III) complex (2) have been prepared with a Schiff base ligand derived from 2-Hydroxy-3-methoxybenzaldehyde with 2-amino-2-methyl-1-propanol. The compounds were characterized by elemental analysis, FT-IR, and UV-Vis spectroscopy. The molecular and crystal structures of (1-2) were determined by the single-crystal x-ray diffraction technique. It turned out that Cu(II) complex (1) forms an S4 -symmetrical tetrameric cage structure, with square-planar coordinated Cu and bridging O atoms at the vertexes of the approximate cube. In the crystal structure of 1, there are large channels along the c-axis, between the tetramers; the solvent- DMSO molecules, occupies these channels. In turn, the complex (2) creates a centrosymmetric trimeric structure, with three octahedrally coordinated Mn ions bridged by O atoms from ligand molecules and acetate ions. The electrochemical behavior studies of the complexes in DMSO displayed the electronic effects of the groups on the redox potential. The redox behavior of Schiff base (1) and (2) complexes included quasi -reversible and irreversible voltammograms, respectively. Intermolecular interactions in the solid states were studied by Hirshfeld surface analysis. These studies provide a comprehensive description of these inter-contact exchanges using an attractive graphical representation using Hirshfeld surfaces and fingerprint plots, along with enrichment ratios. Furthermore, assessment of the inhibitory effect against coronavirus (main protease SARS-CoV-2) was performed by a molecular docking study for both complexes (1 and 2). Both complexes showed a good affinity for CoV-2 for PDB protein ID: 6M03 and 6Y2F.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。