HYDIN loss-of-function inhibits GATA4 expression and enhances atrial septal defect risk

HYDIN 功能丧失会抑制 GATA4 表达并增加房间隔缺损风险

阅读:10
作者:Yu Cao, Junying Guo, Jinping Zhang, Li Li, Hui Wang, Wenjun Ren, Lihong Jiang

Background

Mutations affecting cardiac structural genes can lead to congenital heart diseases (CHDs). Axonemal Central Pair Apparatus Protein (HYDIN) is a ciliary protein previously linked to congenital cardiomyopathy. However, the role of HYDIN in the aetiology of CHDs is thus far unknown. Herein, we explore the function of HYDIN in heart development and CHDs.

Conclusion

HYDIN loss-of-function inhibits GATA4 expression and enhances ASD risk. We also establish the regulation of a key transcription factor in heart development by a ciliary protein.

Methods

The function of HYDIN in cardiac differentiation was assessed in vitro using HYDIN siRNAs, HYDIN overexpression, and HYDIN short hairpin RNA (shRNA)-GATA binding protein 4 (GATA4) cDNA rescue constructs in the human embryonic stem cell (hESC) line HES3. To assess Hydin's function in vivo, we generated shRNA-mediated Hydin knockdown transgenic mice. We characterized the functional mechanisms of the most common human HYDIN variant associated with atrial septal defect (ASD) risk (71098693 mutant, c.A2207C) in cardiac-differentiating HES3 cells.

Results

HYDIN functions as a positive regulator of human cardiomyocyte differentiation and promotes expression of cardiac contractile genes in hESC cells. This is mediated through GATA4, a critical transcription factor in heart development. Cardiac-specific Hydin knockdown in vivo leads to Gata4 downregulation and enhanced atrial septal defect (ASD) risk in mice. The c.A2207C HYDIN mutation reduces GATA4 expression in hESC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。