Melatonin partially protects 661W cells from H2O2-induced death by inhibiting Fas/FasL-caspase-3

褪黑素通过抑制 Fas/FasL-caspase-3 部分保护 661W 细胞免于 H2O2 诱导的死亡

阅读:8
作者:Aída Sánchez-Bretaño, Kenkichi Baba, Uzair Janjua, Ilaria Piano, Claudia Gargini, Gianluca Tosini

Conclusions

The results demonstrate that MEL receptors are present and functional in 661W cells. MEL can prevent photoreceptor cell death induced by H2O2 via the inhibition of the proapoptotic pathway Fas/FasL-caspase-3.

Methods

The mRNA and proteins of the MEL receptors were detected with quantitative PCR (q-PCR) and immunocytochemistry, respectively. To test the protective effect of MEL, 661W cells were treated with H2O2 for 2 h in the presence or absence of MEL, a MEL agonist, and an antagonist. To study the pathways involved in H2O2-mediated cell death, a Fas/FasL antagonist was used before the exposure to H2O2. Finally, Fas/FasL and caspase-3 mRNA was analyzed with q-PCR and immunocytochemistry in cells treated with H2O2 and/or MEL. Cell viability was analyzed by using Trypan Blue.

Purpose

Previous studies have shown that melatonin (MEL) signaling is involved in the modulation of photoreceptor viability during aging. Recent work by our laboratory suggested that MEL may protect cones by modulating the Fas/FasL-caspase-3 pathway. In this study, we first investigated the presence of MEL receptors (MT1 and MT2) in 661W cells, then whether MEL can prevent H2O2-induced cell death, and last, through which pathway MEL confers protection.

Results

Both MEL receptors (MT1 and MT2) were detected at the mRNA and protein levels in 661W cells. MEL partially prevented H2O2-mediated cell death (20-25%). This effect was replicated with IIK7 (a melatonin receptor agonist) when used at a concentration of 1 µM. Preincubation with luzindole (a melatonin receptor antagonist) blocked MEL protection. Kp7-6, an antagonist of Fas/FasL, blocked cell death caused by H2O2 similarly to what was observed for MEL. Fas, FasL, and caspase-3 expression was increased in cells treated with H2O2, and this effect was prevented by MEL. Finally, MEL treatment partially prevented the activation of caspase-3 caused by H2O2. Conclusions: The results demonstrate that MEL receptors are present and functional in 661W cells. MEL can prevent photoreceptor cell death induced by H2O2 via the inhibition of the proapoptotic pathway Fas/FasL-caspase-3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。