Effect of exercise training on nitric oxide and superoxide/H₂O₂ signaling pathways in collateral-dependent porcine coronary arterioles

运动训练对依赖侧支的猪冠状动脉小动脉中一氧化氮和超氧化物/H₂O₂ 信号通路的影响

阅读:6
作者:Wei Xie, Janet L Parker, Cristine L Heaps

Abstract

Endothelial nitric oxide (NO) synthase (NOS) has been shown to contribute to enhanced vascular function after exercise training. Recent studies have revealed that relatively low concentrations of reactive oxygen species can contribute to endothelium-dependent vasodilation under physiological conditions. We tested the hypothesis that exercise training enhances endothelial function via endothelium-derived vasodilators, NO and superoxide/H(2)O(2), in the underlying setting of chronic coronary artery occlusion. An ameroid constrictor was placed around the proximal left circumflex coronary artery to induce gradual occlusion in Yucatan miniature swine. At 8 wk postoperatively, pigs were randomly assigned to sedentary (pen-confined) or exercise-training (treadmill-run: 5 days/wk for 14 wk) regimens. Exercise training significantly enhanced concentration-dependent, bradykinin-mediated dilation in cannulated collateral-dependent arterioles (∼130 μm diameter) compared with sedentary pigs. NOS inhibition reversed training-enhanced dilation at low bradykinin concentrations in collateral-dependent arterioles, although increased dilation persisted at higher bradykinin concentrations. Total and phosphorylated (Ser(1179)) endothelial NOS protein levels were significantly increased in arterioles from collateral-dependent compared with the nonoccluded region, independent of exercise. The H(2)O(2) scavenger polyethylene glycol-catalase abolished the training-enhanced bradykinin-mediated dilation in collateral-dependent arterioles; similar results were observed with the SOD inhibitor diethyldithiocarbamate. Fluorescence measures of bradykinin-stimulated H(2)O(2) levels were significantly increased by exercise training, independent of occlusion. The NADPH inhibitor apocynin significantly attenuated bradykinin-mediated dilation in arterioles of exercise-trained, but not sedentary, pigs and was associated with significantly increased protein levels of the NADPH subunit p67phox. These data provide evidence that, in addition to NO, the superoxide/H(2)O(2) signaling pathway significantly contributes to exercise training-enhanced endothelium-mediated dilation in collateral-dependent coronary arterioles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。