Metabolic biomarkers of prenatal alcohol exposure in human embryonic stem cell-derived neural lineages

人类胚胎干细胞衍生的神经谱系中产前酒精暴露的代谢生物标志物

阅读:6
作者:Jessica A Palmer, Ashley M Poenitzsch, Susan M Smith, Kevin R Conard, Paul R West, Gabriela G Cezar

Background

Fetal alcohol spectrum disorders (FASD) are a leading cause of neurodevelopmental disability. The mechanisms underlying FASD are incompletely understood, and biomarkers to identify those at risk are lacking. Here, we perform metabolomic analysis of embryoid bodies and neural lineages derived from human embryonic stem (hES) cells to identify the neural secretome produced in response to ethanol (EtOH) exposure.

Conclusions

EtOH exposure induces statistically significant changes to the metabolome profile of human embryoid bodies, neural progenitors, and neurons. Several of these metabolites are normally present in human serum, suggesting their usefulness as potential serum FASD biomarkers. These findings suggest the biochemical pathways that are affected by EtOH in the developing nervous system and delineate mechanisms of alcohol injury during human development.

Methods

WA01 and WA09 hES cells were differentiated into embryoid bodies, neural progenitors, or neurons. Cells along this progression were cultured for 4 days with 0, 0.1, or 0.3% EtOH. Supernatants were subjected to C18 chromatography followed by ESI-QTOF-MS. Features were annotated using public databases, and the identities of 4 putative biomarkers were confirmed with purified standards and comparative MS/MS.

Results

EtOH treatment induced statistically significant changes to metabolite abundance in human embryoid bodies (180 features), neural progenitors (76 features), and neurons (42 features). There were no shared significant features between different cell types. Fifteen features showed a dose-response to EtOH. Four chemical identities were confirmed: L-thyroxine, 5'-methylthioadenosine, and the tryptophan metabolites, L-kynurenine and indoleacetaldehyde. One feature with a putative annotation of succinyladenosine was significantly increased in both EtOH treatments. Additional features were selective to EtOH treatment but were not annotated in public databases. Conclusions: EtOH exposure induces statistically significant changes to the metabolome profile of human embryoid bodies, neural progenitors, and neurons. Several of these metabolites are normally present in human serum, suggesting their usefulness as potential serum FASD biomarkers. These findings suggest the biochemical pathways that are affected by EtOH in the developing nervous system and delineate mechanisms of alcohol injury during human development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。