Integrative analysis of chromatin accessibility and transcriptome landscapes in the induction of peritoneal fibrosis by high glucose

高糖诱导腹膜纤维化过程中染色质可及性和转录组景观的综合分析

阅读:4
作者:Qiong Song #, Pengbo Wang #, Huan Wang #, Meijing Pan, Xiujuan Li, Zhuan'e Yao, Wei Wang, Guangbo Tang, Sen Zhou

Background

Peritoneal fibrosis is the prevailing complication induced by prolonged exposure to high glucose in patients undergoing peritoneal dialysis.

Conclusions

In summary, our study provides a comprehensive view of the role of transcriptome deregulation and chromosome accessibility alterations in high glucose-induced pathological fibrotic changes in HPMCs. This analysis identified hub genes, signaling pathways, and key transcription factors involved in peritoneal fibrosis and highlighted the novel glucose-dependent regulation of TGF-β1 by HIF-1α. This integrated approach has offered a deeper understanding of the pathogenesis of peritoneal fibrosis and has indicated potential therapeutic targets for intervention.

Methods

To elucidate the molecular mechanisms underlying this process, we conducted an integrated analysis of the transcriptome and chromatin accessibility profiles of human peritoneal mesothelial cells (HMrSV5) during high-glucose treatment.

Results

Our study identified 2775 differentially expressed genes (DEGs) related to high glucose-triggered pathological changes, including 1164 upregulated and 1611 downregulated genes. Genome-wide DEGs and network analysis revealed enrichment in the epithelial-mesenchymal transition (EMT), inflammatory response, hypoxia, and TGF-beta pathways. The enriched genes included VEGFA, HIF-1α, TGF-β1, EGF, TWIST2, and SNAI2. Using ATAC-seq, we identified 942 hyper (higher ATAC-seq signal in high glucose-treated HMrSV5 cells than in control cells) and 714 hypo (lower ATAC-seq signal in high glucose-treated HMrSV5 cells versus control cells) peaks with differential accessibility in high glucose-treated HMrSV5 cells versus controls. These differentially accessible regions were positively correlated (R = 0.934) with the nearest DEGs. These genes were associated with 566 up- and 398 downregulated genes, including SNAI2, TGF-β1, HIF-1α, FGF2, VEGFA, and VEGFC, which are involved in critical pathways identified by transcriptome analysis. Integrated ATAC-seq and RNA-seq analysis also revealed key transcription factors (TFs), such as HIF-1α, ARNTL, ELF1, SMAD3 and XBP1. Importantly, we demonstrated that HIF-1α is involved in the regulation of several key genes associated with EMT and the TGF-beta pathway. Notably, we predicted and experimentally validated that HIF-1α can exacerbate the expression of TGF-β1 in a high glucose-dependent manner, revealing a novel role of HIF-1α in high glucose-induced pathological changes in human peritoneal mesothelial cells (HPMCs). Conclusions: In summary, our study provides a comprehensive view of the role of transcriptome deregulation and chromosome accessibility alterations in high glucose-induced pathological fibrotic changes in HPMCs. This analysis identified hub genes, signaling pathways, and key transcription factors involved in peritoneal fibrosis and highlighted the novel glucose-dependent regulation of TGF-β1 by HIF-1α. This integrated approach has offered a deeper understanding of the pathogenesis of peritoneal fibrosis and has indicated potential therapeutic targets for intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。