Inhibition of GFAT1 in lung cancer cells destabilizes PD-L1 protein

抑制肺癌细胞中的 GFAT1 可使 PD-L1 蛋白不稳定

阅读:6
作者:Wenshu Chen, Bryanna Saxton, Mathewos Tessema, Steven A Belinsky

Abstract

Immunotherapy using checkpoint blockers (antibodies) has been a major advance in recent years in the management of various types of solid cancers including lung cancer. One target of checkpoint blockers is programmed death ligand 1 (PD-L1) expressed by cancer cells, which engages programmed death 1 on T cells and Natural Killer (NK) cells resulting in suppression of their activation and cancer-killing function, respectively. Apart from antibodies, other clinically relevant agents that can inhibit PD-L1 are limited. PD-L1 protein stability depends on its glycosylation. Here we show that l-glutamine:d-fructose-6-phosphate amidotransferase 1 (GFAT1), a rate-limiting enzyme of the hexosamine biosynthesis pathway, which produces uridine diphosphate-N-acetyl-β-glucosamine, a precursor for glycosylation, is required for the stability of PD-L1 protein. Inhibition of GFAT1 activity markedly reduced interferon gamma (IFNγ)-induced PD-L1 levels in various lung cancer cell lines. GFAT1 inhibition suppressed glycosylation of PD-L1 and accelerated its proteasomal degradation. Importantly, inhibition of GFAT1 in IFNγ-treated cancer cells enhanced the activation of T cells and the cancer-killing activity of NK cells. These findings support using GFAT1 inhibitors to manipulate PD-L1 protein level that could augment the efficacy of immunotherapy for lung cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。